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The present paper is concerned with the statistical dynamics of the turbulent motion in 
Largrangian variables. The set of Lagrangian distribution equations for the coordinates 

and velocities of fluid particles forms an interlocking system, and to decouple these 
equations :ve use the assertion that large-scale and small-scale motions are independent. 

We obtain a closed equation for the simultaneous probability density of the velocity 

and coordinate of a single particle. In the homogeneous case, the latter becomes the 
simultaneous normal distribution of the velocity and coordinate. 

The statistical description of phenomena characterizing the turbulent motion of an 

incompressible fluid necessitates the use of Lagrangian variables and the investigation 
of the motion of the fluid particles moving in accordance with the hydrodynamic equa- 
tions. The problem of turbulent diffusion, i. e. of expansion of a passive admixture in 
the turbulent flow, constitutes such a problem. In a number of cases we can neglect the 
fact that the admixture may take part in the process of molecular diffusion. When the 

admixture is assumed to be continuously distributed, the problem of turbulent diffusion 

will be that of supplying a statistical description of the concentration field n (X, t). 

Such a feature of the concentration field as the probability density Fl (n, X, t) that 
the concentration at the point X and time 1 is equal to n, is related to the probability 

density of the distribution P, (X, t; a, t,) of the coordinate X of the fluid particle 

at the point a when t = to 

F, (n, X, t) = s P, (X, t; a, t,) 6 (n - n (a, 8,)) da 

In the presence of a steady point source Q at the point a, the mean concentration can 

also be defined in terms of P, 

(n (X, t)) _- Q i P, (S, t; a, to) db 
--cc 

Here and in the following the brackets ( ) denote averaging over an ensemble. 
When solving another class of problems, we find that it is not sufficient to consider 

just PI characterizing the motion of a single particle. Such problems include that of 
the relative diffusion, i.e. of the turbulent diffusion of an admixture cloud described in 

the terms of P, (X,, a,, X2, a2, t, &,) that is, of the simultaneous probability distribu- 
tion density of the coordinates X, and X2 of two fluid particles appearing in a1 and a, 
at t = t,. Dispersion of the admixture cloud is connected with the relative dispersion 
of two fluid particles in the following manner 

6 = s (X, - X,)2 P,n (aI, to) n (a,, t,)dXldX,dalda2 

The coordinates Xa (a,t) at the instant t of the fluid particles which appear at the 

points as when t = t, , represent the unknowns in Lagrange equations. The matrix 
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transforms the derivatives with respect to the Eulerian coordinates X , to the derivatives 
with respect to the initial a. 

When the fluid is incompressible, the Jacobian 1 i3Xm / au*.1 of this variable transfor- 
mation from Xm to an is equal to unity. Hydrodynamic equations for an incompressible 
viscous fluid, where pressure is expressed in terms of velocity 

W 
7+vs aVG 

dXfi s av” WY -~--. - -~a (x,, X,) c-IX, -t vAVa 
ax2y ax2 

in Lagrangian coordinates, become 

In expressing the pressure in terms of velocity, use is made ofCreen’s function 6? 

appearing in the Neumann problem of the potential theory and defined by Ga=&Yl~X~I. 
The statistical description of the turbulent motion, in terms of Lagrangian variables, 

is based on the set of distribution functions of the coordinates and velocities P, (V,, 
X, I al, h,..., V n, X ,,, a,, t) such that the probability dw, the velocities and coor- 

dinates of n fluid particles appearing at the points a,, . . . ,a,, when t = t, , fall within 

the range dV,dX,... dV ,X R at the instants t,, . . . , t, .is PndV,d&...dV,,dX,. In the 
following we shall consider the case ti = tz = .. , = t, = t. 

The equations of evolution for the tunction P, and additional conditions are conve- 

niently derived by representing P II as the mean over an ensemble of 

fi 8 (Xi - X (ai, t)) 6 (Vi - x’ (a,, t)) 
i=l 

P ,, are easily shown to be normalized by 

s P,,,dV,,,d-G+, = P,, s 
P,dVldXI = 1 

Since the field Xa (a, t) is continuous Pn+l = P,6 (Vi - V&S (X, - X k),when 

ai = a k. The latter does not, in general, hold for v = 0 when tangential discontinui- 

ties are possible. 
The Eulerian velocity field Va (X, t) and the Lagrangian trajectories are related by 

i3Xa 
- = Va (X (a, t), t) at (1) 

When the statistical description of turbulence is given from the Eulerian point of view, 
the distribution functions F, (V,, X,,...,V,,X,,t) considered 11, 21 represent the 
probability density of the fact that at the instant 8, the flow velocities at the fixed points 

X l ,..., X, fall within dV,... dV,. Clearly, the probability of observing the velocity 
V at the fixed point X is defined by the Lagrangian probability summed over all the 
fluid particles ; the velocity at the point X is equal to V. Indeed, let us integrate P, 
over the initial coordinates a,, . . . ,a n 

<lfi s(vi-X”(ai,t))8(Xi-X(a,,2))da,...da,) (2) 
i=l 

This can be done by changing to new variables X (ai, t), with the Jacobian of this 
transformation equal to unity. %Then using (l), we obtain 

(n 6(V$-- V(Xi, t))) 
i=l 
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Thus 

E, = sP,(V,, Xl, a,, a I -, V,, X,, a,,, t)da,. . *da, (3) 

Integration with respect to the initial coordinates is performed over the volume occu- 
pied by the fluid. 

In this manner we can construct distribution functions possesing m Eulerian and n-m 
Lagrangian arguments, 

A theorem due to Lumly [5] stating that the probability distributions for the Eulerian 
and Lagrangian velocities coincide when the turbulence in an incompressible fluid is 
homogeneous, represents a particular case (homogeneous turbulence and n = 1) of (3). 

Lagrangian dis~ibutions have a d~tinctive property connected with the incompressibi- 
lity of the fluid, namely since 

6(Vi - Y (ai, r)) 8 (Xi -. X (ai, t)) = 6 (ai, - a (Xi, t)) 6 ( Vi - V (Xi, t)) 
P,can be regarded of the distribution of not X, but the initial coordinate o . From this 

it follows that P,,also represents the probability density d@’ , that the velocity is equal 
to Vi at the fixed point Xi, and particles possessing these velocities arrive from random 

points ai with the probability density corresponding to dW = P,,dY,da,...dV,dan. 
The equations of motion of the initial coordinates a (X, t) in terms of the final coor- 

dinates and time have the form W 

Using this point of view we can represent f ,as a mean over the ensemble of 

fiW i - V (X,, r)) 6.(ai - a (X,, t)) (5) i.Z] 

The equations of motion of the random values T’a (X, t) and ua (X, t) consist of 
the Navier-Stokes equations and the transport equations of the initial coordinates (4). 

Differentiating (5) with respect to t and utilizing the equations of motion for va (X, t) 
and aa (X, t) we obtain a system of linked equations forP,in a more compact form 

that that given in [3] 

(6) 

x dV~~~dX~~~d~~~~ -b Y .-?-- c avp I 
a(&- X,+1) An+lPn+l ~~+~dV~~*dX~~~d&~~~ = ’ 

Integration of the latter with respect to the initial coordinates a,,...,a, yields a 

chain of equations for F, , and the condition of incompressibility becomes 

The distinctive character of the dependence of P, on their arguments Xi stems from 
the fact that Xl does not appear in (5) as a random quantity. In particular. the integral 
J’P,dVidai is independent of X*-The definition of P, furnishes the following condition 
expressing this fact 
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This can be replaced by the condition of compatibility at the initial instant t,,. The 

latter form is preferable, as the Lagrangian problem is essentially temporal. Since 

P,-F,fi 6(&--Q for t=t, 
i=l 

the condition can be reduced to conditions imposed on the Eulerian functions F, at the 

instant t = t, 
Existing hypotheses imply that the structure of the developed turbulence at large Rey- 

nolds numbers R represent a set of unordered pulsations of various sizes E and velocities 
o, in which the local velocity gradients oe / 5 > U 1 L when E ((L (L and U are the 

characteristic dimension and velocity of large scale motions). Small scale velocity gra- 

dients are bounded in such a manner that CO&,, I v ~1 1. Since the motions are chaotic 
and only weak connections exist between the large scale and small scale motions, the 

statistical mode of the small scale pulsations with E 4 L is steady and universal [4] and 

should not be governed by the specific properties of the large scale motions. It follows 
that neither X and V nor their fluctuations can be used to characterize the small scale 

components of the motion, as they are basically governed by the large scale motions of 

the fluid elements. 
Following [4] it is expedient to consider the relative motions of the fluid particles, 

i.e. their motion in relation to some definite particle. We can replace the coordinates 

af, Xi and velocities vi of the fluid particles by 

x = xr, &= xi- xr 

v = vr, O( = vi - vr (i=2,3,..., n) 

a = al, aa = ai - al 

Equations (6) will then become 

The latter equations contain terms of differing order of magnitude. When investiga- 

ting the properties of P, over small intervals Er < L, we may expect that the char- 
acteristic velocity difference w of points at these distances is such, that 

@i/H<U/L 

When applied to the equations of the distribution functions, this e. g. means that 
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When the Kolmogorov [4] factors CO,-, = (ev)‘/r and &, = (V”/E)‘/* are used to esti- 
mate the parameters of the relative motion, the neglected terms are at least as small as 
R-'le . Inspecting e. g. the equations for PI, we see that they include P, integrated over 

the difference of the initial coordinates a,. This function can be found from the system 

(7) for the semi-Eulerian functions 

P,‘(V, X, a, aa, &, . . ., o,, g,, q = \ P,das. . . da, 

which are Lagrangian only with respect to a single particle. With the small terms neg- 
lected, the equation for P, becomes 

We assume that in accordance with our discussion, P,’ have the form 

P,’ = P1(V, X, a, t)rp,(O)(o,, &, . . ., a,, 5,) (9) 

The functions satisfy the stationary system of equations and coincide with the Eulerian 
distributions of the velocity differences 02,. . . ,o 11 at the distances 6,). . . , I;, . They are 
homogeneous, isotropic, universal, and are not determined by the distinctive properties 
of the large scale motions but by the temporal changes of the kinetic energy due to 

these motions which is converted into heat by viscous friction 

e = ; v 16 (Es) Aacp~WW%z 

It was proposed in [4] that the Eulerian distribution functions over small distances are 
of such a character. We note that the hypothesis on the independence of the small and 

large scale motions of the type (9) can be formulated for all t only for the function fJn’. 

For p, , the zeroth approximation similar to (9) has a meaning only for small time inter- 
vals t - t, &L f u, since the average particles in a turbulent flow move apart by the 
distance L in the interval of time equal to L/U, even if their initial separation was 
small and equal to a < L. Additional conditions for the universal functions T,,(O) are 

considered in n]. 
lt would appear that an attempt to close the equation for P, using (9) would yield the 

closed equation for PI together with some universal moments of (Pn(“) . The assumed 
character of (pn@‘) , however, implies that these averages are equal to zero. 

From the chain of Eqs. (7) it follows that the zeroth approximation should have a 
correction of the form p ’ 0) 

n 

where qnR(l) are the same as those given in expansion for F, proposed in 01. 
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We have explained before, that a correction of such a type requires that the symmetry 
conditions hold to a corresponding accuracy. For the function P,‘the latter has the form 

P,’ = 5 P, (V + @it X + &, Ua + Ui, 012 - mj9 8% - fi, a2 - CQ? * . . 

- g,, - CQ, . . ., 0, - Oiy t* _- ti7 a, - ui) du2 . * * dun 
(10) 

. . ., - Oil 

The other additional condition can be reduced to symmetry conditions with respect 

to permutations of the groups of arguments wj&ui. 

Since we consider small values of I$, we assume that the main contribution towards 
this integral is made by Ui which are very small compared with the basic scale. Expan- 
ding the right side of (10) with an accuracy to the first order terms and utilizing the 
fact that in the terms containing derivatives. the zeroth approximation yields the required 

accuracy, we obtain the approximate symmetry condition 

P,’ = fy + qa $ q&(O) + Zk 
s 

@qn(q, Et, Ui)dUs . . . da, 

From this we see that the symmetry condition will be satisfied to the same accuracy 

only if the following first order correction is introduced 

$ g3~2~ 52, . . ., a,, E,, q 

For n = 2 we find,following the method used in p], that 

cp’z:’ = + os=‘pz(O) (02, %a), ;d*p) zr. + 

s 
~4~47~ (ml, g2, a2, t) da2 

Inserting these corrections into the equation for P,, we obtain (for simplicity we con- 

sider the homogeneous case) the following closed equation for P,: 

where Y = X - a, and p which can be found from the integrals of the universal func- 
tions ~a~@), depends only on e, v and t. It has the dimension of velocity squared and it 
should be independent of viscosity v ; hence p = yet. 

Equation (11) has a structure typical of Markov random processes, although the coef- 
ficient of diffusion in the velocity space is negative. 

It is evident that the solution of (11) satisfying the initial condition P, (V, Y , to, to)= 
= J’, (V, to)6 (Y) will represent a simultaneous normal distribution for Y and V. As 
was explained in 01, in the homogeneous case the distribution Ft (V, t) is normal 

PI(V, Y, t)dexp 
- Y2 (V”> + 2YV (VY> - v2 (P?> 

(Y”) <V”> - <YV>X 
The corresponding averages can easily be found by solving a closed set of second 

moment equations. The requirement that 

(Y2) (V2) - (YV)2> 0 

yields the condition for ‘l’. If the law of decay of the homogeneous turbulence is 

then y = &and 
(VZ) = (V2 (0)) (1 + t/T)-’ 

(Y”) = (V”(0)) T [t - Tln(l+t/T)], (YV)= (V2(0))(¶+t/T)-’ 

Thus, when t > T , the square of the displacement (Y2) c t just as in the case of 
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random wanderings. 
The other result which emerges from the existing notions on the structure of turbulence 

takes the form of a hypothesis given in [63. It states that evolution of the velocity and 

=oordinate increments AV = V lto + t) _ V (to), AX = x (to + Z) - v (t& - a 

of a fluid particle for r < T can be represented by a Markov random process in a six- 

dimensional phase space {AX, AV), and the coefficient of diffusion in the velocity 

space is proportional to E in the corresponding equation. The same point of view with 
regard to the character of accelerations for R & 1 was used in F], which dealt with 
the moments of the relative motion of two fluid particles. 

The present method is directly adjacent to the method of expanding the dis~bution 

functions in R”‘, developed in 11-J. The structure of expansion of the Lagrangian distri- 
butions is such that it can be transformed into the previously obtained expansion for Pn , 
by employing the relation (3) connecting Fn with P,, as explained above. When t = to, 
the correction connected with dP1 / da is of higher order of smallness than the terms 

present in the expansion, and can therefore be assumed to be zero with accuracy of up 
to R-‘I*. It must be noted that Eq. (11) does not contain small parameters and cannot 

therefore yield the closed equation for the distribution density PI (X, a, t) of the diffu- 

sion type. 
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